
SnowSim - Final Report
Zixi Cai

zixi_cai@berkeley.edu
Xiaoyu Yang

xiaoyu_yang@berkeley.edu
Chris Powers

chris.powers@berkeley.edu

ABSTRACT
Snow is a special material that has both solid- and fluid-like
properties, which makes it hard to create realistic and be-
lievable snow effects. Large amounts of snow particles take
tremendous computational time to simulate, making it expen-
sive to produce high quality scenes. In this project, we build
a high-performance snow simulator based on Material Point
Method (MPM) [7]. Moreover, we apply CUDA to further
accelerate computation and reduce rendering time. We demon-
strate the performance with various snow results.

Author Keywords
snow simulation, material point, particle simulation with
CUDA

1. INTRODUCTION
Simulating natural phenomena is an important application
that remains challenging. For realistic simulation, a particular
representation should be chosen, typically depending on the
properties of the physical problem to be solved. Snow simula-
tion is extremely hard because it has both fluid- and solid-like
properties. Fluid dynamics are handled using a Cartesian
grid[6], where a fluid is represented by the parts/cells of the
grid it occupies at a given time step. In contrast, substances
like sand are naturally represented in particle form, where
each particle has its own status and properties. Snow, however,
is a more complex substance. On one hand, it consists of
individual grains and flakes of snow, but on the other hand, the
particles are tiny so it sometimes behaves like a fluid. To han-
dle the complex properties of snow, we use MPM to effectively
simulate believable snow results.

With MPM, we store snow data in both grid and particle form.
Information is transformed back and forth between the two
forms during simulation. With this method, self-collision
and fracture are handled automatically. Moreover, iterating
through each particle is unnecessary as we only consider the
contribution of neighboring particles to the target particle.
Near neighbor search is highly effective with the data structure
we build. More details will be discussed in Section 2.

Changing the simulation parameters can drastically affect the
style and behavior of the snow. Decreasing Young’s modulus
and the hardening coefficient means less stress is required to
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.XXXXXXX

(a) (b)

(c) (d)

Figure 1: Snowballs colliding with each other and objects.
Screenshots of different timesteps are shown.

stretch the snow by the same amount, giving a muddy effect.
Decreasing the critical compression and critical stretch makes
the snow break down earlier, giving a fine-grained, powdery
effect. Increasing the coefficient of friction, gives a rigid effect.
More discussion is in Section 3.

To further accelerate simulation, we apply CUDA to our al-
gorithm. We utilize the fact that each grid cell and particle
is relatively independent to parallelize the computation with
CUDA. In each step, each thread takes over only one or a
few particles or cells and does the same computation. Atomic
operations are used to prevent multiple threads writing to the
same unit at the same time. We compared the performance of
the CPU and GPU versions on a scene with the same number
of particles and time steps. In the collision scene in Figure 1,
the CUDA version takes about 1/3 of time of the CPU version.
This allows us to simulate complicated scenes in a tolerable
amount of time.

The paper continues with a detailed discussion of the technical
approach in Section 2. In Section 3 we present various snow
results with different parameters and extended results in 3D
scenes.

2. TECHNICAL APPROACH

MPM Implementation
Overview
We follow the Material Point Method for snow simulation
described in Stomakhin et al. [7]. An elasto-plastic constitutive

https://doi.org/10.1145/3313831.XXXXXXX

(a) With parameters E0 = 104, ε0 = 7.5, θC = 10−2, and θS = 2.5× 10−3, the
snow is slightly powdery, but still far too muddy, and looks like it’s melting
instead of collapsing.

(b) Interestingly, the solution is not to make the snow more solid by increasing E0
and ε0, since this prevents the letters from collapsing at all. Instead, drastically
increasing to θC = 0.1 and θS = 0.05 gives the desired crumbly effect.

Figure 2: Letters collapsing

model is adopted to model dynamics of snow and a hybrid
process combining Lagrangian particles and Cartesian grids
is leveraged to update particle positions and velocities at each
timestep. Figure 4 shows some visualizations of the particles
alongside the active grid cells. The method consists of 9 steps.

Step 1: Rasterize particle data to the grid. Given the posi-
tions, masses, and velocities of the particles, we transfer these
properties to the grid cells.

Step 2: Compute particle volumes and densities. In the force
computation, volumes of particles are needed. So we deduce
the volume of each particle from its density, which is derived
from the densities of surrounding grid cells. This step is only
executed once during the first timestep.

Step 3: Compute grid forces. The force on each grid cell is
computed using the volumes and deformation gradients of
neighboring particles.

Step 4: Update velocities on the grid. Given the force on each
cell, acceleration as well as change in velocity can be calcu-
lated using Newton’s Second Law. Note that we apply gravity
here by adding it to the stress-based force when calculating
acceleration, which is not described in Stomakhin et al. [7].

Step 5: Grid-based body collisions. When a grid cell is found
to be inside an object and has relative velocity component
towards the object, we handle the collision by modifying the
velocity. Specifically, we zero out the normal component of
the relative velocity and apply a friction-based decay to the
tangent component. Note that in Stomakhin et al. [7], they use
level sets to represent objects and leverage algebraic methods
to determine whether a point is inside an object as well as the
normal at that point. In our project, since we only consider
simple geometries such as planes and spheres, geometrical
methods are used to make these judgements.

(a) (b)

(c) (d)

Figure 3: Simulate 16 snowballs’ collision with CUDA. There
are 80,000 particles in the scene in total.

Step 6: Update deformation gradients. The elastic and plastic
parts of the deformation gradients of particles are updated
given the grid velocities. We use the Eigen library to compute
the SVD in the computation.

Step 7: Update particle velocities. Particle velocities are up-
dated as a weighted sum of PIC velocities and FLIP velocities.

Step 8: Particle-based body collisions. The same routine as
step 5 is applied to update particle velocities due to collision.
One thing we do, which is not done in Stomakhin et al. [7],
is that besides updating particle velocities, we also update
particle positions by pushing them out of the objects they were
inside. We do this because chances are that the velocity change
alone would fail to drag the particle out of the object, leaving
it stuck inside the object where it could not interact with other
particles anymore.

Step 9: Update particle positions. Particles are moved accord-
ing to their computed new velocities.

We do not implement semi-implicit integration since it is com-
plicated and time-consuming. Additionally we can eliminate
the impact of explicit integration’s instability by choosing
small timesteps.

Data Structure for Near Neighbor Search
One of the most important tricks we take advantage of to
accelerate simulation is using a special data structure to save
time for near neighbor search. Many steps involve particle-grid
interaction, in which we need to iterate over all particles/cells
and for each particle/cell, we need to take its surrounding
particles/cells into consideration. Take step 3 as an example.
For a given grid cell, only particles that live in cells that are
no more than 2 cells away have a non-zero contribution to
the force, so we do not need to visit particles outside of those
ones.

To take advantage of this property, we need a data structure
that can efficiently locate particles in a grid provided the grid
location. Here we use a hash map, in which keys are the

Figure 4: Visualization of snow particles and the active grid
cells. Some grid cells are active despite not containing any
snow particles because the algorithm also considers nearby
particles.

discrete positions of cells and values are arrays of particles
that live in the corresponding cells.

We also use a hash map to store grid information, with keys
storing the discrete cell locations and values storing the infor-
mation of each cell. We use a hash map instead of a simple
array or matrix because most grid cells are inactive and will
not make any contributions. Storing only the active cells takes
much less memory.

CUDA Acceleration
We further accelerate simulation by using CUDA. For many
steps of the algorithm, we either update particle information
according to surrounding grid information or update grid in-
formation according to surrounding particle information. This
means that the computation for each particle/grid cell is rel-
atively independent during each step. This allows us to effi-
ciently parallelize computation for each particle/cell. More-
over, computation for each particle/cell is highly similar. This
is where CUDA, which is good at handling a large amount of
independent and similar work, comes in.

The CUDA version is not much different from the CPU ver-
sion, except that each thread only handles one or a few par-
ticles or cells. That is to say, we only need to modify the
original for loop so that thread i iterate over particles or cells
with index i, i+K, i+2K, ..., where K represents total number
of threads launched.

To take full advantage of the power of CUDA, we need to
rearrange the computations in step 1 and step 3, which update
grid information according to particle information. The most
straightforward approach is to iterate over all active cells and
for each cell, iterate over all surrounding particles. Unfortu-
nately, this method gives at most get M times speedup, where
M is the number of active cells, which is very small compared

to the number of particles. Thus, in order to saturate the usable
threads, we instead iterate over particles, and for each particle,
we update its surrounding cells.

This brings a new problem. Multiple threads handling dif-
ferent particles may try to update the same cell at the same
time, which will cause a race condition and make the final
results uncertain. To prevent this, we apply the atomic oper-
ation atomicAdd. In step 1, we use it to update masses and
velocities of cells. In step 3, we use it to update grid forces.

Another issue comes with SVD. It is a lot of trouble to use the
Eigen library in CUDA. To bypass this, we exploit the fact that
we are handling 2 by 2 matrices and use the explicit formula
the SVD of a 2 by 2 matrix described in Blinn et al. [3]. For a

matrix M =

[
m00 m01
m10 m11

]
, its SVD M =UΣV> is given by

E =
m00 +m11

2
F =

m00−m11

2

G =
m10 +m01

2
H =

m10−m01

2
Q =

√
E2 +H2 R =

√
F2 +G2

θ =
1
2
[atan2(H,E)− atan2(G,F)]

φ =
1
2
[atan2(H,E)+ atan2(G,F)]

U =

[
cosφ −sinφ

sinφ cosφ

]
V =

[
cosθ sinθ

−sinθ cosθ

]
Σ =

[
Q+R

Q−R

]
Test Framework and Video Creation
We created a test framework, so that we can focus separately
on the implementation of the algorithm and the visualization
of the results. The finished algorithm can be integrated into
this framework to create a demo, via which we check the
algorithm’s correctness.

The test framework consists of a visualizer, a data genera-
tor, and a simulation launcher. The data generator generates
initial data in the form of a series of particles. The simula-
tion launcher takes in the data and run the simulation loop.
For each time step of the loop, it calls the simulate_one_step
function, which updates the information of the particles. The
visualizer then renders these particles at each time step accord-
ingly. Provided with this test framework, we are able to fully
concentrate on the implementation of the simulate_one_step
function.

The visualizer is based on CGL. It is responsible for trans-
forming coordinates from the world space, in which we do
simulation, into screen space. Given particle positions, the
visualizer draws them as points. The intensity of each particle
is set based on its density, which is computed in step 2. The
denser a particle is, the high value of intensity we assign to it.

Since the simulation is much slower than reality, we want to
speed it up in order to determine whether or not the dynamics
look correct. To do this, we invented a playback mechanism.

Figure 5: Visualization of a snowball crashing into a snow
castle. The castle was constructed by sampling from multiple
rectangular regions. The number of samples in each region is
proportional to its area, making the density constant.

First we separated simulation and visualization: we can simu-
late and save all particle information for each step to a file, and
after simulation we can replay the whole process by reading
from the file. This makes motion look faster and more natural.
Additionally, we can adjust the speed of playback by specify-
ing S, which means we display 1 frame for every S ticks of
the simulation. This playback mechanism also lets us easily
record videos of our results.

One problem we faced is that the visualization described above
does not work for the CUDA version, because we rely on a
remote server to use GPU, which makes CGL that requires
X11 impossible. Therefore we adopt a totally different visual-
ization scheme for the CUDA version. We leverage OpenCV
to render the scene to images that will be saved to files, and
we can later create a video by concatenating these images
given a certain FPS. Note that we don’t render and save every
simulation step, because we do not need so many frames to
create a video, and more importantly, it takes time to transfer
data from GPU to CPU.

As for the data generating scheme, we specify the shape, the
size and the position of the snow chunk we want to create.
The generator draws a certain number of samples uniformly
in the area, which are used as the positions for the particles.
We assign the mass of each particle as a random value around
a mean mass of a particle. The mean mass m of a particle
is computed according to the density ρ , the area A and the
number of samples n as m = ρA

n . An example of our data
generation is in Figure 5, where a castle was constructed by
sampling from multiple rectangles, and a snowball with some
initial velocity was constructed by sampling from a circle.

3D Extension
We also try to extend our algorithm as well as the visualizer
to 3D, shown in Figure 6. The algorithm itself is similar
to 2D version. As for visualization, we apply the diffusion
component of the Blinn-Phong shading model [4] to surfaces
of objects to make scenes look cooler.

3. RESULTS

Parameter Search
As mentioned in the introduction, we test the effect of varying
certain simulation parameters, to see if we can reproduce
the effects that would be expected based on physics and the
simulation code. For these tests, we use a scene of a snowball
rolling down two ramps. The resulting images can be seen

(a) Snowball falling on an object (b) Snowballs colliding

Figure 6: 3D simulation and visualization for two scenes.

in Figure 7. The default parameters, the same as the defaults
from [7], can be seen in Table 1.

Parameter Name Notation Default Value
Hardening coefficient ε0 10

Young’s modulus E0 1.4×105

Critical stretch θS 7.5×10−3

Critical compression θC 2.5×10−2

Coefficient of friction µ 0.1

Table 1: Default simulation parameters

First, we increase Young’s modulus and the hardening coeffi-
cient. From a physical interpretation [2], Young’s modulus is
E0 =

σ

ε
, the ratio of stress to strain. Thus increasing E0 will de-

crease the amount of strain, or deformation, generated per unit
stress, or force, applied. Increasing the hardening coefficient
ε0 should have a similar effect. This matches our expectations
from how these parameters are used in the simulation code.
Namely, the initial Lamé parameters [1] are:

µ0 =
E0

2(1+ν)

λ0 =
E0λ

(1+ν)(1−2ν)

where ν is the Poisson ratio, a parameter we keep constant.
The takeaway is that µ0 and λ0 increase proportionally to
Young’s modulus. In step 3 of the algorithm, these values
are used to compute the per-particle stress σ according to the
formulae from [8] and [5]:

JE = detFE Jp = detFp

µ = µ0eε0(1−Jp) λ = λ0eε0(1−Jp)

σ =
2µ

Jp
(FE−RE)FE

T +
λ

Jp
(JE −1)JEI

where FE and FP are the elastic and plastic components of the
deformation gradient. This shows that the ratio of stress to
deformation is proportional to E0eε0(1−Jp), which predicts that
increasing E0 and ε0 should decrease the deformation for a
given amount of stress. Our experiment confirms that with an
increased E0 and ε0, the snowball becomes more solid and icy
because it is less prone to deformation. Decreasing Young’s

(a) Icy Snow, E0 = 5×105 and ε = 20 (b) Muddy Snow, E0 = 5×103 and ε = 5

(c) Powdery Snow, θC = 10−2 and θS = 2.5×10−3 (d) High Friction, µ = 0.5

Figure 7: Effects of Different Parameters

modulus and the hardening coefficient gives the reverse effect
of muddy snow.

Next, we decrease the critical compression and critical stretch
parameters. According to [7], this should make the snow
powdery instead of chunky. In the simulation code, they are
used to clamp the singular values σ of FE to the range [1−
θC,1+ θS]. The singular values of FP scale with 1

σ
. Thus,

decreasing these parameters should bring the singular values
closer to 1. Then the determinants JP and JE will also get
closer to 1, since the determinant is the product of the singular
values. This is still hard to interpret physically, but we can at
least see how this change in parameters will affect the stress
computation. Our experiments confirm that decreasing θC and
θS gives us smaller, powdery snow particles.

Lastly, we increase the coefficient of friction µ . The physical
meaning of this is simply increasing the frictional force that
prevents the snow from moving as much. In the simulation
code, this parameter is used at the grid and particle level to
update velocity after a collision. As expected, this slowed the
snow down, preventing it from rolling all the way down both
ramps. It also has the unexpected affect of making the snow
roll much more during its descent, instead of simply sliding
down the ramp.

Overall, even slightly changing the parameters has a large
impact on the behavior of the snow, which demonstrates the
wide range of capabilities of this algorithm. Just by changing a
few coefficients, we can go from solid ice, to a loose collection
of particles, to a slushy blob. The two experiments with snow
in the shape of letters in Figure 8 show how creativity can
come into play in tuning parameters to get your desired effect.

It takes some time to strike the right balance between the two
extremes of highly deformable snow, which doesn’t retain the
shape of the letters at all, and very stiff snow, which doesn’t
collapse, to get snow that slowly collapses and crumbles.

(a) (b)

(c) (d)

Figure 8: Interacting with a "snowplow"

CUDA speedup
We compare the time cost of rendering the same scene using
the CPU version and the CUDA version. We experiment on a
"two-snowball collision" scene (Figure 1). The total number
of particles is 10,000, and we run 10,000 steps which equals
to 2 seconds. The CPU version takes 1289 seconds and the
CUDA version takes 411 seconds, which is roughly 1/3 of the
time the CUDA version takes.

4. CONTRIBUTIONS
Zixi Cai Built up the test framework and the 2D visualizer;
debugged and optimized the algorithm; extended the algorithm
to CUDA version.

Xiaoyu Yang Finished step 5, 6 and 8 of the algorithm;
extended the algorithm to 3D; built up the 3D visualizer.

Chris Powers Finished step 1, 2, 3, 4, 7 and 9 of the al-
gorithm; invented the playback mechanism; created lots of
interesting scenes.

5. REFERENCES
[1] 2017. Lame constants. (2017). https://www.

encyclopediaofmath.org/index.php/Lamé_constants.
[2] 2020. Young’s Modulus. (2020).

https://en.wikipedia.org/wiki/Young%27s_modulus.

[3] Jim Blinn. 1996. Consider the lowly 2 x 2 matrix. IEEE
Computer Graphics and Applications 16, 2 (1996),
82–88.

[4] James F Blinn. 1977. Models of light reflection for
computer synthesized pictures. In Proceedings of the 4th
annual conference on Computer graphics and
interactive techniques. 192–198.

[5] Thomas Breekveldt. 2017. Analysis of MPM for Snow.
(2017).

[6] Chenfanfu Jiang, Craig Schroeder, Andrew Selle,
Joseph Teran, and Alexey Stomakhin. 2015. The affine
particle-in-cell method. ACM Transactions on Graphics
(TOG) 34, 4 (2015), 1–10.

[7] Alexey Stomakhin, Craig Schroeder, Lawrence Chai,
Joseph Teran, and Andrew Selle. 2013a. A material
point method for snow simulation. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 1–10.

[8] Alexey Stomakhin, Craig Schroeder, Lawrence Chai,
Joseph Teran, and Andrew Selle. 2013b. Material Point
Method for Snow Simulation. Technical Report. 2 pages.

https://www.encyclopediaofmath.org/index.php/Lam�_constants
https://www.encyclopediaofmath.org/index.php/Lam�_constants
https://en.wikipedia.org/wiki/Young%27s_modulus

	1 Introduction
	2 Technical Approach
	MPM Implementation
	Overview
	Data Structure for Near Neighbor Search

	CUDA Acceleration
	Test Framework and Video Creation
	3D Extension

	3 Results
	Parameter Search
	CUDA speedup

	4 Contributions
	5 References

